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A B S T R A C T

Patchily distributed pelagic fish species present a challenge to classical approaches to hydroacoustic survey
designs. We propose a spatial simulation approach to designing acoustic surveys and provide a case study in the
northern resident stock of Atlantic menhaden Brevoortia tyrannus during winter. The structure and abundance of
this stock is poorly characterized due to a paucity of fishery-independent surveys and the geographically limited
range of the reduction fishery. In order to develop new fishery-independent information for this stock, we
conducted a simulation study to estimate the accuracy and precision of an offshore hydroacoustic survey. We
simulated a spatial super-population based on fishery-dependent data, and randomly re-sampled the population
with various types of hydroacoustic survey equipment. Our results suggest that a combination of down-viewing
echosounder and omni-directional sonar can generate biomass estimates with a coefficient of variation around
25%. The use of down-viewing echosounder alone, however, generated biomass estimates with poor precision.
Our approach accounts for the patchy spatial distributions of the survey populations, which leads to more
realistic estimates of precision than classical approaches implicitly assuming independence. The approach also
evaluates several types of hydro-acoustic survey equipment in deriving absolute biomass estimates, and the
survey, once implemented, may contribute to improved spatially explicit management of the stock.

1. Introduction

Hydroacoustic (termed acoustic hereafter) surveys are a useful
technique in fishery research for estimation of stock biomass or abun-
dance (Simmonds and MacLennan, 2005). For example, acoustic sur-
veys enable monitoring of pelagic clupeid populations at a sufficient
spatiotemporal resolution to inform stock assessment and management
(De Oliveira and Butterworth, 2004; Zwolinski et al., 2012). Surveys
currently used to assess pelagic clupeid stocks along the continental
shelf include herring in the USA and Europe (Overholtz et al., 2006;
Simmonds, 1996), sprat in the UK (Casini et al., 2011), and sardines
along the West Coast of the USA (Demer et al., 2012, 2013; Zwolinski
et al., 2012). A line-transect design was used to acoustically survey
these populations, with transects randomly selected using either stra-
tified or systematic designs to achieve precise biomass estimates (Jolly
and Hampton, 1990; Simmonds and Fryer, 1996). Simulation testing
was conducted in a super-population framework to characterize the
precision of such sampling designs (Simmonds and Fryer, 1996), but
none of these studies considered the detectability of acoustic systems
such as down-ward viewing or side-scan sonar.

Spatial distribution of the stock and the properties of acoustic

survey equipment are two important components in the process of
acoustic survey design (Simmonds and Fryer, 1996). However, ap-
proaches that ignore the spatial component, such as the degree of
coverage, are still commonly used as guides for determining total length
of transects for acoustic surveys (Aglen, 1989, Section 9.6.4 in
Simmonds and MacLennan, 2005). When simulation studies are used to
inform the design of acoustic surveys, they typically have focused on
other survey components such as comparing estimators of abundance
(Gimona and Fernandes, 2003), design type (e.g., stratified, systematic;
Simmonds and Fryer, 1996), or how to deal with shapes and orienta-
tions of schools (Kalikhman and Ostrovsky, 1997). Ignoring the spatial
distribution of schools may lead to less accurate estimates of abundance
or biomass than is desired (Simmonds and MacLennan, 2005).

Pelagic clupeids typically form schools that can span hundreds of
meters in length, resulting in a patchy spatial distribution of schools
across the landscape (Boyd et al., 2014; Haugland and Misund, 2004).
Simulation studies based on statistical models for the spatial distribu-
tion of the stock could account for the schooling behavior of the stock
(Ch. 22, Thompson, 2012), but these approaches have rarely been ap-
plied to hydroacoustic surveys designs for pelagic clupeids. We there-
fore developed a spatial simulation approach that accounted for the
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patchy spatial distribution of the stock and the properties of acoustic
survey equipment. Specifically, our approach considered both tradi-
tional downward-facing echosounder designs and additional informa-
tion provided by omni-directional sonar (Brehmer et al., 2006;
Stockwell et al., 2012).

One such pelagic clupeid that forms large, patchily distributed
schools is Atlantic menhaden Brevoortia tyrannus. The Atlantic men-
haden stock supports the largest fishery by volume on the east coast of
the USA with annual landings of 131 to 715 thousand metric tons
(ASMFC, 2017). Menhaden were the focus of a purse-seine fishery that
historically ranged from the Gulf of Maine to Florida. However, the
geographical range of the purse-seine fishery has contracted since the
1980s and is now focused on the Chesapeake Bay and nearby coastal
waters. Although menhaden are assessed as a single, coastwide stock
(ASMFC, 2017), data from the northern portion of the species’ range
during winters has been sparse since the reduction fishery contracted.
Currently, fisheries independent information on spatial distribution and
biomass of menhaden outside the reduction fishery’s range is limited to
estuarine waters or a small portion of the coastal waters of New York
(Lucca and Warren, 2018, 2019).

Several recent menhaden studies have changed our understanding
of the species’ life history in ways that might impact assessment and
management. Until recently, scientists assumed that most spawning-age
menhaden migrate south in winter to congregate offshore south of Cape
Hatteras. However, recent re-analysis of historical tagging data in-
dicates the presence of resident menhaden populations coastwide in
winter (Liljestrand et al., 2019). Recent analysis of long-term ichthyo-
plankton survey data corroborates the year-round presence of spawning
menhaden across the Mid-Atlantic (Simpson et al., 2017, 2016). Also,
the recent development of a successful winter bait fishery on the off-
shore shelf of Southern New England provides additional evidence of
the presence of resident adult menhaden in winter (SEDAR, 2015).

These new studies and fishery highlight the need to better characterize
the spatial distribution and biomass of the northern resident menhaden
stock in winter.

To adequately survey for menhaden, acoustic survey equipment and
depth must be carefully considered. In most bottom trawl surveys,
menhaden are captured at extremely low rates (SEDAR, 2015). Thus, an
aerial survey has been proposed for monitoring menhaden when
schools are located near the surface in late summer to early fall (Latour,
2013). However, an aerial survey will not suffice in winter because
menhaden do not school at the surface between January and March and
commercial fishers report offshore schools are located near the ocean
floor (S. Axelsson, pers. comm., Ahrenholz, 1991; June and Reintjes,
1959; Reintjes, 1969; Smith, 1991). Acoustic equipment currently used
by the fishing industry, namely a combination of downward-viewing
echosounders and omni-directional sonar (Bernasconi et al., 2009;
Brehmer et al., 2006; Stockwell et al., 2012), are more appropriate for
surveying menhaden in winter because they operate over the entire
water column. A combination of sonar and echosounder data collection
can cover a larger volume of water in a limited amount of time
(Brehmer et al., 2006; Fässler et al., 2016; Hewitt, 1976; Jones et al.,
2017; Misund et al., 1995; Simmonds and MacLennan, 2005). Com-
parison of echosounder vs. sonar data collected from the same vessel
indicates that sonar can encounter one to two orders of magnitude more
school targets in the same amount of time (Hewitt, 1976).

The aim of this study is to illustrate the application of spatial si-
mulation methods to the design of hydroacoustic surveys for a
schooling species that exhibits a patchy spatial distribution. A case
study application is provided to compare the precision of biomass es-
timates of Atlantic menhaden in the shelf waters off New Jersey in
winter using several acoustic survey designs, and to justify the total
transect distance to sample. Our analyses are based on limited fishery-
dependent data from this region and season, published literature, and

Fig. 1. Proposed survey area (black line) spanning 15–50 miles off the coast of New Jersey from the southern edge of Hudson Canyon extending southward to the
New Jersey/Delaware border. Location of menhaden catch reported by Northeast Fisheries Observer Program between January and March, 2006–2016 (hatched
squares) within the study area (black line). To maintain confidentiality, data are plotted by quarter degree square.
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local fisherman’s knowledge. We begin by modeling the spatiotemporal
super-population of the menhaden stock in this region and season. We
then re-sample the simulated population according to the proposed
designs and present the likely precision of the estimates.

2. Methods

2.1. Survey timing and study area

The survey area includes the region extending 15–50 miles offshore
from the southern border of Hudson Canyon in the north to the New
Jersey/Delaware border in the south (Fig. 1). This study area was
chosen to represent the region off the New Jersey coastline in which the
winter bait fishery for menhaden typically operates and menhaden
bycatch in other fisheries is concentrated (Fig. 1). Also, the inshore
limit was chosen so as not to overlap with winter tows of the New
Jersey Ocean Trawl Survey (max extent ∼13 miles offshore) and to
focus on areas further offshore where adult menhaden are typically
encountered (SEDAR, 2015). The offshore limit was defined as the
approximate maximum distance reported in midwater trawl Vessel Trip
Reports (VTRs, 2014–2017) and all Northeast Fisheries Observer Pro-
gram (1989 and 2016) reports within the study area in winter which
roughly follows the 50m isobath (Fig. 1). The proposed survey would
occur in February when water temperatures in the region drop to ∼4-
6⁰C and menhaden schools exhibit greatly reduced mobility (S. Ax-
elsson, pers. comm., June and Reintjes, 1959).

2.2. Fishery-dependent and environmental data

A combination of fishery-dependent and environmental data was
used to simulate the potential distribution of menhaden schools across
the study area. Two sources of fishery-dependent menhaden data were
available from the study region in the winter season to help inform
simulations. The first data source was menhaden bait fishery Vessel
Trip Reports provided by NOAA Fisheries Greater Atlantic Regional
Office with permission of the fishermen spanning the start of the fishery
in 2014 to 2017. Second, a logbook designed for this project
(Supplement Table 1) was kept voluntarily by the fishermen during the
2018 winter fishing season to obtain information on schools en-
countered (location, depth, temperature, amount caught) and en-
counter rate (distance and time searched).

Monthly bottom temperature and salinity estimates were obtained
from 0.2 ° monthly hydrographic climatology generated for the Mid-
Atlantic Bight continental shelf (Richaud et al., 2016; https://www2.
whoi.edu/staff/ykwon/data). Bathymetry data were obtained from
NOAA’s National Centers for Environmental Information U.S. Coastal
Relief Model (https://www.ngdc.noaa.gov/mgg/coastal/crm.html).
The existing environmental covariates were distributed at multiple
spatial resolutions, resulting in spatial misalignments between the
covariates. We aligned the environmental layers onto a common
∼500m resolution using the R package raster (Hijmans, 2017).

2.3. Sampling design

Given the lack of information about how menhaden utilize pelagic
habitat in northern, offshore waters in winter, it was deemed better not
to stratify than to incorporate inappropriate strata (Simmonds and
Fryer, 1996; Simmonds and MacLennan, 2005). A systematic parallel
design was chosen due to its superior performance for spatially struc-
tured populations (Overholtz et al., 2006). The survey area was first
divided into parallel transects with major axes perpendicular to the
shoreline (Fig. 2). Transect lengths varied due to the irregularly shaped
survey area. A systematic random sampling design was chosen to select
a fixed number of transects (Fig. 2) from five to twelve based on lo-
gistical constraints. Sample sizes (i.e. the number of transects and total
transect length) were chosen based on the simulation study described

below.
Re-sampling was conducted according to seven strategies, assuming

various detectabilities. We assumed that a vessel with mid-water trawl
gear, downward-viewing echosounder and omni-directional sonar was
available for the simulation design. Four sampling strategies with in-
creasing expected costs were defined below.

1 Downward-viewing echosounder used to estimate biomass for each
school encountered within a narrow athwartship (i.e. horizontal
detection range of the down-looking echosounder) detection range
of 20m. This range (20m) was chosen based on a beamwidth of 10°
for the echosounder, and an average water depth of 50m to re-
present the maximum detection range achievable in our study area;
actual detection ranges achieved will be lower at shallower depths.

2 Downward-viewing echosounder (same as Option 1) used to esti-
mate the biomass of each school encountered. In addition, omni-
directional sonar is used to detect schools within 400ms of each side
of the vessel to estimate the number of additional schools en-
countered. The 400m range was estimated based on the shallowest
depth in the study area (20m) and previous sonar surveys (Brehmer
et al., 2007; Hewitt, 1976; Mackinson et al., 1999; Misund et al.,
1995; Stockwell et al., 2012). The average biomass identified using
the downward-viewing echosounder was multiplied by the number
of schools identified by sonar to estimate the total biomass along
each transect (Lucca and Warren, 2018).

3 Sonar used to identify locations of all schools within 400ms each
side of the vessel. Any school detected by the omni-directional sonar
will be observed using the down-viewing ecosounder to estimate
biomass of each encountered school. Total biomass is aggregated
based on all down-viewing estimates.

4 Sonar is used to identify menhaden schools, and each identified
school along the transect is captured with mid-water trawl gear.
Total biomass is measured dockside and aggregated based on the
sum of biomass captured.

Options 5–7 are similar to options 2–4 except that a 200-meter
detection distance each side of the vessel is assumed (instead of 400ms)
to examine survey design performance under less ideal conditions due
to either survey logistical constraints or other unforeseen limitations on
school detection.

2.4. Spatial distribution of schools – Poisson process model

Several features of the available commercial menhaden data pose
challenges to a classical Point process model (Diggle, 2013). Specifi-
cally, the occurrences of menhaden schools encountered by fishermen
are not randomly sampled, and they were observed over dynamic en-
vironmental conditions. We used a dynamic point process model to
predict the presence of successful trips given environmental conditions.
Specifically, we assumed that the fisheries data follow a dynamic
Poisson process with intensity u t( , ) for any possible cruise location u
in the study area S and time step t . S represents the hypothetical col-
lection of all possible fishing locations,

=u t Z u tln( ( , )) ( , )T (1)

The generic term Z u t( , ) is a vector of time-varying environmental
covariates depending on location u S and time t , and denotes a
vector of coefficients of interest.

We consider two specific models of (1). We denote bottom tem-
perature, salinity, latitude and bathymetry as sbt, sbs, lat and bathy in
Eqs. (2) and (3). Parametric linear (2) as well as additive trends (3)
were fitted for each covariate during the fishery observation period.

+ + +ln( ) bathy sbs sbt lat (2)

+ + sln( ) bathy sbt (lat) (3)

D. Liang, et al. Fisheries Research 222 (2020) 105402

3

https://www2.whoi.edu/staff/ykwon/data
https://www2.whoi.edu/staff/ykwon/data
https://www.ngdc.noaa.gov/mgg/coastal/crm.html


Model comparison was based on the Akaike Information Criterion.
Statistical inference was based on a computational efficient approx-
imation of the intractable dynamic Poisson process likelihood, im-
plemented in the R package spatstat (Baddeley et al., 2015). The ad-
ditive trends were estimated using the R package mgcv (Wood, 2011).

We simulated the spatial distribution of schools determined by the
fitted Poisson process map representing the expected number of schools
encountered per unit area under the dynamic Poisson point process
model (Fig. 3). The VTR data were re-sampled to represent the hy-
pothetical number of trips (i.e. re-sample size) required to catch the
entire population. The re-sample size was determined based on fishery
encounter rates with menhaden schools observed in the field.

2.5. School density – local kriging

Biomass per school encountered was determined by the distribution
of observed fishery catches (Fig. 2). We used local kriging to align the
simulated schools with the observed catch data. Specifically, a global

variogram analysis was conducted for the catches to estimate its extent
of spatial correlation, i.e. the distance beyond each simulated school at
which the catches exhibit no dependence. The estimated extent of
correlation was used to define a neighborhood around each simulated
school. Optimal interpolation was conducted within the neighborhood
to predict the catch at each school location. Kriging was implemented
using the R package automap given the large number of simulations
(Hiemstra et al., 2009).

2.6. Data analyses

Monte Carlo simulation was performed to evaluate the seven design
options. For each Monte Carlo replicate = …m M1, , , a finite popula-
tion of menhaden was generated from the predicted intensity of the
fitted point process models (2) and (3). Systematic random sampling
was conducted based on each option = …j 1, ,7. Let Bm denote the si-
mulated total biomass for a Monte Carlo replicate and let B̂mj denote the
corresponding biomass estimate based on design option j. Specifically

Fig. 2. An example sample of 10 transects using systematic sampling from a frame of 562 transects based on a 400m omni-directional sonar detection range. Dark
circles represent schools encountered within the detection distance. Simulated school density (kg) based on kriging observed Vessel Trip Reports catch per school
were shown onto simulated school distribution. Magnitude of catches increase with darker colors, but are reported relative to the minimum density to protect
confidentiality of industry data.
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let yimj denote the biomass at transect i and Limj the corresponding
transect length. Let T denote the total number of transects in the
sampling frame, n denote the sample size (i.e. number of transects), and
define = =L Lk

T
k1 , the total length of the all transects. A design-based

estimator was used to obtain total biomass (4). In addition, a ratio es-
timator was used to incorporate the varying lengths of transects as
auxiliary information (4). Given that the survey catches are likely
proportional to the transect lengths, a ratio estimator can provide su-
perior estimation to classical design-consistent estimators. The design-
consistent and ratio estimators are defined as follows:

= =
=

=

=
B T y B

L y
L

ˆ and ˆmj i

n
imj mj

i
n

imj

i
n

imj
,design 1 ,ratio

1

1 (4)

The average biomass over Monte Carlo simulation B0 was used as
the true biomass. We computed the coefficient of variation (CV) as a
measure of precision.

= =
= =MB

B B B
M

BCV 1 ( ˆ ) where 1
j m

M
mj m

M
m

0
2 1 0

2
0 1 (5)

The coefficient of variation incorporated both spatial variability of
schools encountered (captured by the Poisson process model; Fig. 3)
and the sampling variability (Fig. 2). Both design-based and ratio-based
estimation were conducted for each sample, but the type of estimator
was omitted in Eq. (5) for brevity of notation.

For comparison, the traditional preliminary estimate of necessary
sampling effort was calculated based on the degree of coverage (p. 359;
Simmonds and MacLennan, 2005). In this calculation, the CV was re-
lated to the total transect length sampled without considering the
spatial heterogeneity of encounter rates.

= = =
=

D
A

D
M

DCV 0.5 , j and 1
j

j

j
j m

M
mj

0
1 (6)

In Eq. (6), Dj is the average total transect length sampled over

individual samples Dmj, and A is the survey area, j is the degree of
coverage.

3. Results

We took a super-population or model-based view of sampling,
which considers the variance components from both population reali-
zations from model (1) and the randomization of the sampling units
(Simmonds and Fryer, 1996). The predicted spatial patterns of en-
counter intensity (expected number of successful trips per unit area per
winter month (Fig. 3) demonstrated the uncertainty of school responses
to oceanographic conditions. The school distribution based on linear
covariates showed more variability across the study area (Fig. 3a) than
the patterns based on non-linear latitude effect (Fig. 3b). Both predic-
tions exhibit increased intensity offshore near the middle of the study
area. The northern part of the study area exhibited lower encounter
rates.

During the 2018 winter fishing season, actual encounter rates from
a fisher’s logbooks were around 1 school per hour, or 0.43 schools per
mile. The actual data were compared with the simulated encounter
rates. The corresponding maximum number of schools encountered per
transect were around 7 and 15. The re-sample sizes of 50 and 100 si-
milar VTR trips best represented the 2018 encounter rates (Table 1).
The maximum number of simulated schools per transect were between
9 and 18 with the 95% confidence intervals covering the field based
estimates. The simulated total biomass represented a small proportion
of the coastwide stock assessment estimate of menhaden biomass; re-
sample sizes of 50 and 100 corresponded with ∼15% and ∼31% of the
total biomass estimated in 2000, the year with lowest estimated
coastwide biomass (ASMFC, 2017).

Options for down-viewing echosounder use (Option 1) and expan-
sion of average biomass estimated from the down-viewing echosounder
to schools spotted with sonar (Options 2 and 5) generated CVs between

Fig. 3. Choropleth maps of spatial prediction of trip success intensity across two modeling scenarios: (a) linear effects of bathymetry, sea bottom temperature, sea
bottom salinity and latitude, (b) linear effects of bathymetry and sea bottom temperature, additive effects of latitude. Intensity represents expected number of success
trips per 1× 1 decimal degree area, January 2017.
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200% and 400% (Fig. 4). The wider detection range (option 2) was not
associated with a smaller CV than the narrower detection range (option
5) because relatively few schools were observed with the down-viewing
echosounder, on average, for biomass estimation. Lower CVs between
25% and 60% were generated by other options that involved both
down-viewing echosounder and sonar (Options 3, 4, 6, 7; Fig. 4). The
average cumulative transect distance sampled ranged between 120 km
and 300 km across all options. Accuracy increased with increasing total
distance surveyed. Narrower side scan swaths (200m; Options 5–7)
generated lower accuracy than wider swaths (400m; Options 2–4) with
the same survey effort. In options with high detectability for biomass
(Options 3–4, 6–7), the ratio estimator that accounted for unequal
transect lengths generated more accurate estimates than the design
based estimator. In options with poor detectability for biomass (options
1–2,5), performance of the ratio estimator was comparable with that of
the design based estimator.

Simulation-based CVs were larger than those predicted by degree of
coverage theory. Simulated CVs ranged from 25% to over 400%. The
400% CV significantly exceeded the predictions from the degree of
coverage theory. The extent of exceedance depended on the encounter
rate, design options, and the choice of estimator. When a narrow
echosounder swath width was assumed in option 1, simulated CVs were

much higher for this schooling population with sparse encounter rate.
When a higher encounter rate was simulated using 100 re-samples of
the VTR data (Fig. 3), survey design Options 3 and 4 (400m swath)
generated similar CVs as those predicted by degree of coverage theory
(Fig. 4). The rate of change in CV per additional transect length was
linear under the simulation as opposed to the super-linear decrease
predicted by degree of coverage theory.

The precisions between two pairs of design options: 3 and 4, 6 and 7
were similar (Fig. 4). These pairs differed mainly in the survey costs.
Qualitatively similar results (Appendix A - Figs. 2 and 3) were obtained
when we simulated school intensity using an alternative fitted Poisson
process model (Fig. 3b).

4. Discussion

Simulation-based CVs were larger than those predicted by the degree
of coverage theory (Aglen, 1989) and used for planning acoustic surveys
(Parker-Stetter, 2009; Simmonds and MacLennan, 2005), although esti-
mates from the two approaches became more similar when the re-sample
size of the population was large relative to the field-based encounter
rates. This suggests that the model variance component diminishes as the
population becomes less patchy, and the simulated patchiness of the

Table 1
Simulated total biomass (metric tons) and maximum encounter rate per transect based on two Poisson process modeling scenarios: (a) linear effects of bathymetry,
sea bottom temperature, sea bottom salinity and latitude, (b) linear effects of bathymetry and sea bottom temperature, additive effects of latitude. Each Poisson
process modeling scenario was applied to a simulated menhaden population created using resampled Vessel Trip Report fishing trips replicated either 50 or 100
times. Six out of eighteen trips were not used due to missing temperature data (n=4) or because the trip was located outside the study area (n= 2).

Scenario NVTR (number of resample of VTR
data= 12 tripsa)

biomass (thou.
mt)

lower 95% limit
(thou. mt)

upper 95% limit
(thou. mt)

maximum school per
transect

lower 95%
limit

upper 95%
limit

(a) 50.0 86.7 80.7 93.8 9 7 12
100.0 173.6 164.0 182.2 15 12 20

(b) 50.0 85.7 78.9 92.2 11 9 14
100.0 171.8 162.9 181.5 18 15 22

a Six trips not used due to missing temperature (n=4) and outside area (n=2) generated from SceMFS_3(total_school), result on cluster Fall2016/SceMFS.

Fig. 4. Coefficient of variation based on 1999 Monte Carlo samples and the average cumulative distance sampled (km) for seven survey design options. Down-only
denotes down-viewing echosounder only with 20m swath; wide/narrow denote omni-directional sonar with 400m/200m detection range; down+wide/narrow
denotes biomass estimated for all schools encountered by sonar via down-viewing echosounder across the omni-directional sonar detection range; E suffix denotes
expansion of down-viewing echosounder biomass to all schools encountered by omni-directional sonar; T suffix denotes schools identified via omni-directional sonar
and biomass determined by trawl sets. Populations were simulated based on 50 or 100 re-samples of vessel trip reports in winter 2017 based on a fitted Poisson model
with linear environmental covariates. Reference lines were predictions based on the degree of coverage theory.
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population was associated with the precision of hydroacoustic surveys. If
the underlying spatial distribution is not correctly described, then the
precision of acoustic surveys may be substantially lower than was de-
signed (Barry and Welsh, 2001). Specifically, the precision of narrow
swath echosounder-only surveys may generate poor biomass estimates
for patchily distributed population. We expect most pelagic clupeids to
exhibit non-random and patchy spatial distribution. Thus the simulation
estimates of CV are comprehensive and conservative, and other ap-
proaches for designing acoustic surveys may not provide as accurate
estimates of survey CV if they do not account for the patchy nature of
schooling clupeids. As the population became less patchy, the traditional
degree of coverage estimates were more likely to be realized. However,
schools needed to occupy approximately 1.3% of the raster cells before
the degree of coverage estimator was approximately correct according to
the simulations herein.

The precision also depended upon the acoustics equipment.
Generally, the wider the detection distance, the better the precision. The
400m detection range assumed in Options 3 and 4 produced more pre-
cise estimates than the 200m detection range assumed in Options 6 and
7. Although most sonar can detect schools 800–1200m from the vessel
depending on depth, bottom type, temperature, and salinity (Brehmer
et al., 2007, 2006), the assumption of 400m may be more realistic given
the expected minimum distance at which schools can be reliably detected
at the shallowest depths in the study area (∼20m) and the results of
previous sonar surveys (Brehmer et al., 2007; Hewitt, 1976; Mackinson
et al., 1999; Misund et al., 1995; Stockwell et al., 2012).

The large CV resulted from narrow detection range of the down-
viewing echosounder, and the small sample size for biomass estimation.
Specifically in options 2 and 5 (Fig. 4), among schools spotted by the
side-scan sonar, a small fraction of them (∼ 5–10%) were available for
biomass estimation due to the narrow horizontal detection range
(20m). Thus the CVs in subpanels 2 and 5 are limited by the sample size
for biomass estimation. For example, in the case where no school was
observed by echosounder, biomass estimation has a sample size of zero.
Thus CVs from the wide (400m) detection range were not smaller than
those from the narrow (200m) detection range. In the other options
(e.g. options 3 and 6, Fig. 4), we assumed that biomass information of
all schools detected by omni-directional sonar was available for esti-
mation, and the resulting CVs from these options are consistent with the
existing designs.

Our results were consistent across several reasonable hypotheses
about the spatial distribution of menhaden. The point process models
included several scenarios of the environmental drivers of the men-
haden distribution. Simulations with these scenarios suggest that the
general conclusions regarding the CVs of the proposed acoustic survey
equipment remain true. Specifically, the variance due to the stochastic
distribution of the stock was incorporated in our CV in addition to the
design-based variance component (Liang et al., 2017). The model var-
iance component will likely dominate the design based component in
our CV estimates when the sample size is non-negligible relative to the
sampling frame (Chen et al., 2004).

In addition to the effectiveness of potential survey designs, costs are
also an important factor to consider before implementation. This si-
mulation study assumes that a vessel is available with a hull-mounted
omni-directional sonar unit in addition to either a scientific echo-
sounder or high-end industry grade equivalent. Many fishing vessels
operating in the study area are equipped with long-range omni-direc-
tional sonar, but few vessels are equipped with a high-end echosounder,
so there may be an additional cost. However, our results suggest the
survey CV would increase dramatically when using an echosounder
alone because most menhaden schools will be missed. Hence, finding
ways to use a vessel that already has an omni-directional sonar (e.g.,
partnering with commercial fishers) may be the most cost effective
approach if survey vessels are not already adequately equipped.

Simulated acoustic transect data were analyzed using a design-
based and a model-based approach (ratio estimator). The model-based

approach generated more precise biomass estimates than the design-
based estimator. This suggests that the unequal length of transects can
be incorporated as auxiliary information in a model to reduce the sta-
tistical variability of the estimates. However, the performance of the
ratio estimator depends in part on the detection range of the acoustic
system. For the down-view only option, detections were sparse, and the
total biomass distribution among the transects became zero-inflated. As
a result, longer transects were not associated with larger total observed
biomass. This problem of few observations of schools violates the as-
sumption underlying the ratio estimator, and leads to random features
observed in panel 1 and loss of efficiency for the ratio estimator ob-
served in panels 1, 2 and 5 (Fig. 4). Additional routinely collected
variables such as geographic coordinates of the samples can also pro-
vide useful auxiliary information regarding the spatial distribution of
the stock. A geostatistical estimator can then incorporate this geo-spa-
tial information to improve the precision of the abundance estimates
(Jensen and Miller, 2005; Liang et al., 2017; Overholtz et al., 2006).
While model-based analyses of probabilistic survey data are in general
useful, they should be applied with caution to data collected by non-
probabilistic survey designs (Smith, 1990). Specifically, model diag-
nostics and validation should be conducted to ensure that the proposed
model fits the data adequately.

Some caveats to our simulation study should be noted. We assumed
the biomass of all schools encountered along the transect was estimated
with 100% accuracy whether captured via trawl or measured with an
echosounder. However, midwater trawls may not always be able to
capture entire schools of menhaden and there is considerable un-
certainty in acoustic estimation of biomass (Simmonds and MacLennan,
2005). This uncertainty and detectability issues will need to be in-
corporated in the sampling design and data analyses to provide un-
biased estimates. Also, an echosounder swath width of 20m was as-
sumed given limitations on the minimum resolution of the imagery
used to spatially model menhaden school intensity. However, the actual
diameter of the echosounder cone beneath the vessel will vary based on
depth, salinity, and temperature (Simmonds and MacLennan, 2005).
Therefore, the CV estimates generated by this simulation study should
be used to weigh the relative merits of alternative survey design options
and not be used as an estimate of anticipated survey estimate precision.
We did not consider the survey cost in the simulation, assuming that
transect distance serves as a surrogate for the total cost.

Designing a hydro-acoustic survey of menhaden remains challen-
ging due to the highly patchy school distributions and uncertain de-
tectability. Our simulation study indicated a traditional acoustic survey
that uses a down-viewing echosounder only will not be adequate for
estimating menhaden biomass across the shelf waters off New Jersey in
winter given the patchy distribution of schools and the limited re-
sources available. Only scenarios where schools are first located via
sonar then measured via trawl or echosounder produced acceptable CVs
(Options 3, 4, 5, 6). Our simulation results suggest that the use of down-
viewing echosounder with and without the additional of omni-direc-
tional sonar and trawling would provide biomass estimates of drasti-
cally different precisions, possibly due to the patchy distribution of
menhaden schools. Ideally, data from all acoustic systems would be
collected and combined to account for the limitations of each equip-
ment. Given these simulation results, we recommend a combination of
down-viewing echosounder and sonar be explored as an alternative to
traditional echosounder only surveys for patchily distributed schooling
pelagics such as menhaden. Additionally, we recommend model-based
analyses of the survey data, which should provide more accurate esti-
mates of biomass and CV at a marginal cost of the actual survey. Our
simulation based approach presented here could provide a quantitative
assessment of the efficiency of given combinations of acoustic survey
equipment for other stocks. If the future stock assessment of menhaden
incorporates spatial structure (Tuck and Possingham, 2000; Wilberg
et al., 2008), estimates of biomass in the study area could inform esti-
mation of the magnitude of the stock.
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